You are here: Home / Methodes numériques

# Numerical Methods in Earth Sciences

ECTS: 3

TeachersF. DubuffetV. Langlois, V. Bonnet-Gibet

Class type : 30hrs of courses and practical classes

Language: english or french

Contents:

Lectures : 14h

• Partial differential equations
• Finite-difference method
1. Taylor series - Accuracy and order
2. Stability analysis - Explicit and implicit Euler scheme, Crank-Nicolson scheme and Alternating direction implicit schemes
3. Modified equation method: numerical dissipation and dispersion
4. Applications to parabolic and hyperbolic equations

Fig: Numerical solution of the 1-D advection equation using the Beam Warming scheme. Analytical solution (dotted line) and numerical solution for 2 values of the Courant number (C=0.5 in bold and C=1.5)

• Finite Volume

Fig: example of a staggered grid in 2-D cartesian

1. Introduction
2. Applications to the advection/diffusion equation
3. Irregular grids
4. Example: MPDATA scheme

• Spectral and pseudo-spectral methods
1. Introduction
2. Fourier transform
3. Order and limitation

Fig: Temperature field in a model of Rayleigh-Bénard convection with an infinite Prandtl number, in the Boussinesq approximation and a Rayleigh number of 107. An alternating directiion implicit scheme and finite volumes are used to solve the heat equation. The stockes equation is solved using pseudo-spectral methods.

Practicals: 16h

The students write a Fortran 90 or a C program to solve a geophysical problem using some previous numerical methods.

### Ressources*:

• lecture 11/02/2020 [pdf]
• Summary [pdf]
• Fortran [pdf]
• *Connection obligatoire pour récupérer les documents

Document Actions

Département ENS
• Directrice :
Guillemette Ménot
• Secrétaire :
Emmanuelle Lousson
« November 2020 »
November
MoTuWeThFrSaSu
1
2345678
9101112131415
16171819202122
23242526272829
30

Personal tools